

Estimation of SDGs Indicator for Non-Sampled Area Using Cluster Information

C: Integrated statistics for integrated analysis (SC2) Journey towards integrated statistics

> Presenter: Rizky Zulkarnain & Dwi Jayanti BPS-Statistics Indonesia

Outline of Presentation

- Introduction
- Methodology
- Result and Discussion
- Conclusion

Virtual Event 15-18 June 2020 2020 Asia-Pacific Statistics Week

Leaving no one and nowhere behind

User Needs

#apstatsweek2020

DECADE

Virtual Event 15-18 June 2020 2020 Asia-Pacific

Statistics Week

Leaving no one and nowhere behind

Problems

01

Some surveys such as IDHS produces estimate only for national and provincial levels.

SAE techniques are usually considered to resolve the problems. But, estimations are reliable for **sampled areas** only.

Roughly estimating **non-sampled areas** using synthetic model merely produces considerable bias.

Research Purpose

This paper utilizes similarities among areas to estimate SDGs indicator for non-sampled districts in North Sumatera. This paper uses CPR as indicator to be estimated.

DECADE

Quality Dimensions

Small Area Estimation considering cluster information (SAE-cluster) is intended to improve availability and quality of disaggregated statistics

Data

• Data for CPR in North Sumatera province is acquired from 2017 IDHS. Auxiliary variables are obtained from Family Planning Coordinating Board of North Sumatera.

Table 1. Lists of auxiliary variables

No.	Variable	Description	Unit of measure
1	Z ₁	Number of active acceptors	person
2	Z ₂	Number of family planning clinics	unit of clinics
3	Z ₃	Number of family planning institution	unit of institution
4	Z_4	Number of pre-prosperous and 1 st prosperous family	unit of family

PAM Clustering

Model

• Prediction model for sampled area:

$$ln\left(\frac{\hat{p}_{ik}}{1-\hat{p}_{ik}}\right) = \hat{\beta}_0 + \sum_{p=1}^{P} \hat{\beta}_p Z_{ikp} + \sum_{d=1}^{K-1} \hat{\delta}_d D_d + \hat{v}_i$$

• Prediction model for **non-sampled area**:

$$ln\left(\frac{\hat{p}_{i^{*}k}}{1-\hat{p}_{i^{*}k}}\right) = \hat{\beta}_{0} + \sum_{p=1}^{P} \hat{\beta}_{p} Z_{i^{*}kp} + \sum_{d=1}^{K-1} \hat{\delta}_{d} D_{d} + \bar{\hat{v}}_{(k)}$$

Results (1)

Results (2)

Table 2. Cluster of Districts in North Sumatera Province

Cluster	Number of cluster members	Districts	
1	5	Nias, Nias Selatan, Pakpak Bharat, Nias Utara *, Nias Barat	
2	14	Mandailing Natal [*] , Tapanuli Selatan, Tapanuli Tengah, Tapanuli Utara, Labuhan Batu, Dairi, Karo, Humbang Hasundutan, Batu Bara, Padang Lawas Utara [*] , Padang Lawas, Labuhanbatu Selatan [*] , Labuhanbatu Utara, Gunungsitoli	
3	8	Toba Samosir, Samosir *, Sibolga, Tanjungbalai *, Pematangsiantar, Tebing Tinggi, Binjai, Padangsidimpuan	
4	3	Asahan, Simalungun, Serdang Bedagai	
5	3	Deli Serdang, Langkat, Medan	

Note: *non-sampled area

Results (3)

Method 🔶 Direct 🔶 SAE-Cluster

SAE-cluster revises the direct estimates upward or downward. Confidence intervals of SAE-cluster are generally shorter than the direct estimates. This indicates that SAE-cluster produces more precise estimates than that direct method.

DECADE

ACTION

Virtual Event 15-18 June 2020 2020 Asia-Pacific Statistics Week

Leaving no one and nowhere behind

Results (4)

Conclusions

- SAE-cluster can improve the quality of disaggregated statistics, either for sampled areas or for non-sampled areas.
- SAE-cluster utilizes existing data sources to produce disaggregated statistics. Hence, respondent burden could be reduced and cost-efficiency could be increased.
- This study contributes to Accuracy dimension of official statistics and Data Integration dimension of Integrated Statistics.

References

- 1. Anisa R, Kurnia A, Indahwati. (2014). Cluster Information of Non-Sampled Area in Small Area Estimation. IOSR Journal of Mathematics, 10, 15-19.
- 2. Anisa R, Notodiputro KA, Kurnia A. (2014). Small Area Estimation for Non-Sampled Area Using Cluster Information and Winsorization with Application to BPS Data. Proc. ICCS-13, 27, 453-462.
- 3. Hastie T, Tibshirani R, Friedman J. (2009). The Elements of Statistical Learning 2nd Edition. New York: Springer-Verlag.
- 4. Rao JNK. (2003). Small Area Estimation. New York: John Wiley & Sons.
- 5. Saei A and Chambers R. (2005). Empirical Best Linear Unbiased Prediction for Out of Sample Area. Working Paper M05/03, Southampton Statistical Sciences Research Institute.
- 6. Sarda-Espinosa A. (2019). Time-Series Clustering in R Using the dtwclust Package. The R Journal. <u>https://doi.org/10.32614/RJ-2019-023</u>.

Thank You

