

Comparison of ARIMA, SSA, and ARIMA – SSA Hybrid Model Performance in Indonesian Economic Growth Forecasting

Action Area C. Integrated statistics for integrated analysis (SC1) Methodological approaches to integrated analysis: Use of sound methodologies

> Presenter: Muhammad Fajar Statistics Indonesia

BACKGROUND

- The development of forecasting methods is increasingly rapid and complex as advances in the development of computing technology
- Using Hybrid Forecasting

METODOLOGY

Data Source

The data used in this research is economic growth (quarter to quarter, q to q) 1983 Q2 (quarter 2) – 2018 Q2 taken from Badan Pusat Statistik-Statistics Indonesia (BPS). The data for testing is divided into 20% observations (28 forecast ahead), 10% observations (14 forecast ahead), 5% observations (7 forecast ahead), and 3% observations (4 forecast ahead).

ARIMA-SSA Hybrid

ARIMA – SSA hybrid method is a combination of ARIMA and Singular Spectrum Analysis (SSA) method. Time series data is assumed to consist of linear and nonlinear components, thus could be represented as:

$$x_t = P_t + N_t$$

with P_t is a linear component and N_t is a nonlinear component. ARIMA is used to forecast on linear component, then the residual from the linear component is the nonlinear component. Then, SSA is used to forecast the nonlinear component.

$$\hat{x}_{T+h} = \hat{P}_{T+h} + \hat{N}_{T+h}$$

with \hat{x}_{T+h} is the x forecasting result on the T + h period, \hat{P}_{T+h} is the P forecasting result on the T + h period, $\hat{N}_{T+h} N$ forecasting result on the T + h period, and h is the ahead period.

METODOLOGY

ARIMA (Autoregressive-Moving Average)

In general, ARIMA $(p, d, q)(P, D, Q)^S$ model for x_t time series is:

$$\Phi_P B^S \phi_p(B) (1-B)^d (1-B^S)^D x_t = \theta_q(B) \Theta_Q(B^S) \varepsilon_t$$

В	: lag operator.
p,q	: nonseasonal autoregressive order and nonseasonal moving average order.
P, Q	: seasonal autoregressive order and seasonal moving average order.
d	: nonseasonal differencing order.
D	: seasonal differencing order.
S	: seasonal period, for monthly data ($S = 12$), quarter data ($S = 4$).
$\phi_p(B)$: nonseasonal autoregressive component.
$\Phi_P B^S$: seasonal autoregressive component.
$\theta_q(B)$: nonseasonal moving average component.
$\Theta_Q(B^S)$: seasonal moving average component.
$(1 - B)^{d}$: nonseasonal differencing.
$(1 - B^S)^D$: seasonal differencing.
ε_t	: error term.

METODOLOGY

• Singular Spectrum Analysis (SSA)

Step 1. Embedding

Given a $x_1, x_2, ..., x_T$ time series, choose an even number L, where L parameter is the window length defined as 2 < L < T/2, and K = T - L + 1.

The cross matrix is:

$$\boldsymbol{X} = (X_1, \dots, X_T) = \begin{pmatrix} x_1 & x_2 & \cdots & x_K \\ x_2 & x_3 & \cdots & x_{K+1} \\ \vdots & \vdots & \ddots & \vdots \\ x_L & x_{L+1} & \cdots & x_T \end{pmatrix}$$

The cross matrix proves to be a Hankel matrix, which means every element in the main anti diagonal has the same value. Thus, X could be assumed as multivariate data with L characteristic and K observations so that the covariance matrix is S = XX' with dimension of $L \times L$.

METODOLOGY

Step 2. Singular Value Decomposition (SVD)

Suppose that **S** has eigen value and eigen vector λ_i and U_i , respectively. Where $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_L$ and U_1, \ldots, U_L . Thus, obtained SVD from **X** as follows:

$$\boldsymbol{X} = \boldsymbol{E}_1 + \boldsymbol{E}_2 + \dots + \boldsymbol{E}_d \tag{1}$$

where $E_i = \sqrt{\lambda_i} U_i V'_i$, i = 1, 2, ..., d, E_i is the main component, d is the number of eigen value λ_i , and $V_i = X' U_i / \sqrt{\lambda_i}$.

METODOLOGY

• Step 3. Grouping

In this step, X is additively grouped into subgroups based on patterns that form a time series, they are trend, periodic, quasi-periodic, and noise component. Partition the index set $\{1, 2, ..., d\}$ into several groups $I_1, I_2, ..., I_n$, then correspond X_I matrix into group $I = \{i_1, i_2, ..., i_b\}$ which is defined as:

$$X_I = E_{i_1} + E_{i_2} + \dots + E_{i_b}$$
(2)

Thus, the decomposition represents as:

$$X = X_{I_1} + X_{I_2} + \dots + X_{I_n} \tag{3}$$

with X_{I_j} (j = 1, 2, ..., n) is reconstructed component (RC). X_I component contribution measured with corresponding eigen value contribution: $\sum_{i \in I} \lambda_i / \sum_{i=1}^d \lambda_i$. Using the close frequency range from the main components is based on the study of grouping process using auto grouping (Alexandrov & Golyandina, 2005). Main components with relatively close frequency ranges are grouped into one reconstructed component. So on, until several reconstructed components are formed.

Step 4. Reconstruction

In this last step, X_{I_j} is transformed into a new time series with T observations obtained from diagonal averaging or Hankelization. Suppose that Y is a matrix with $L \times K$ dimensions and has

 $y_{ij}, 1 \le i \le L, 1 \le j \le K$ elements. Then, $L^* = \min(L, K)$, $K^* = \max(L, K)$, and T = L + K - 1. Then, $y_{ij}^* = y_{ij}$ if L < K and $y_{ij}^* = y_{ji}$ if L > K. **Y** matrix transferred into $y_1, y_2, ..., y_T$ series with using the following formula:

$$y_{k} = \begin{cases} \frac{1}{k} \sum_{m=1}^{k} y_{m,k-m+1}^{*}, 1 \leq k \leq L^{*} \\ \frac{1}{L^{*}} \sum_{m=1}^{L} y_{m,k-m+1}^{*}, L^{*} \leq k \leq K^{*} \\ \frac{1}{T-k+1} \sum_{m=k-K^{*}+1}^{T-K^{*}+1} y_{m,k-m+1}^{*}, K^{*} \leq k \leq T \end{cases}$$
(4)

Diagonal averaging on equation (4) is applied to every matrix component X_{I_j} on equation (3) resulting a $\widetilde{X}^{(k)} = (\check{x}_1^{(k)}, \check{x}_2^{(k)}, ..., \check{x}_T^{(k)})$ series. Thus, $x_1, x_2, ..., x_T$ series is decomposed into an addition of reconstructed *m* series:

$$x_t = \sum_{k=1}^{m} \check{x}_t^{(k)}, t = 1, 2, \dots, T$$
(5)

Step 4. Reconstruction

In this last step, X_{I_j} is transformed into a new time series with *T* observations obtained from diagonal averaging or Hankelization. Suppose that **Y** is a matrix with $L \times K$ dimensions and has $y_{ij}, 1 \le i \le L, 1 \le j \le K$ elements. Then, $L^* = \min(L, K)$, $K^* = \max(L, K)$, and T = L + K - 1. Then, $y_{ij}^* = y_{ij}$ if L < K and $y_{ij}^* = y_{ji}$ if L > K. **Y** matrix transferred into $y_1, y_2, ..., y_T$ series with using the following formula:

$$y_{k} = \begin{cases} \frac{1}{k} \sum_{m=1}^{k} y_{m,k-m+1}^{*}, 1 \leq k \leq L^{*} \\ \frac{1}{L^{*}} \sum_{m=1}^{L} y_{m,k-m+1}^{*}, L^{*} \leq k \leq K^{*} \\ \frac{1}{T-k+1} \sum_{m=k-K^{*}+1}^{T-K^{*}+1} y_{m,k-m+1}^{*}, K^{*} \leq k \leq T \end{cases}$$
(4)

Diagonal averaging on equation (4) is applied to every matrix component X_{I_j} on equation (3) resulting a $\widetilde{X}^{(k)} = (\widetilde{x}_1^{(k)}, \widetilde{x}_2^{(k)}, ..., \widetilde{x}_T^{(k)})$ series. Thus, $x_1, x_2, ..., x_T$ series is decomposed into an addition of reconstructed *m* series:

$$x_t = \sum_{k=1}^{m} \breve{x}_t^{(k)}, t = 1, 2, \dots, T$$
(5)

SSA Forecasting

SSA forecasting used in this research is SSA recurrent, with estimating minnorm LRR (Linear Recurrence Relationship) coefficient. The LRR coefficient is calculated with the following algorithm:

- 1. Input: $\mathbf{P} = [P_1: ...: P_r]$ matrix, \mathbf{P} is a matrix composed of U_i eigen vector from SVD step. Suppose that $\underline{\mathbf{P}}$ is a \mathbf{P} that the last row is removed, and $\overline{\mathbf{P}}$ is a \mathbf{P} that the first row is removed.
- 2. For every P_i vector column from **P**, calculate π_i , where π_i is a the last component from P_i , and $\underline{P_i}$ is a P_i that the last component is removed.
- 3. Calculate: $v^2 = \sum_{i=1}^r \pi_i^2$. If $v^2 = 1$, then STOP with a warning message "Verticality coefficient equals 1."

4. Calculate the min-norm LRR coefficient (\mathcal{R}) :

$$\mathcal{R} = \frac{1}{1 - \nu^2} \sum_{i=1}^{\prime} \pi_i \underline{P_i}$$

- 5. From point (4) obtained: $\mathcal{R} = (\alpha_{L-1} \dots \alpha_1)'$.
- 6. Then, calculate the forecasting value with:

$$\hat{x}_n = \sum_{i=1}^{L-1} \alpha_i \tilde{x}_{n-1}, \qquad n = T+1, \dots, T+h$$

RESULTS

Applied in Indonesian Economic Growth Forecasting (Quarterly)

Method	Forecast Ahead			
wieujou	28	14	7	4
ARIMA (0,0,0) (1,0,1) ⁴	1.764	1.691	1.118	0.843
SSA	2.207	2.374	2.523	2.507
ARIMA (0,0,0) (1,0,1)4-SSA hybrid	1.861	1.674	1.092	0.813

Table 2.1 RMSE of ARIMA, SSA, and ARIMA-SSA Hybrid Method.

source: author.

Table presents RMSE according to the number of test data used from the observed method. In general, when the test data is smaller, the RMSE from ARIMA (0,0,0) $(1,0,1)^4$ and ARIMA (0,0,0) $(1,0,1)^4$ – SSA hybrid is decreasing, whereas the RMSE result of SSA is unstable. ARIMA-SSA hybrid method gives a minimum RMSE compared to the other two methods. This shows that forecasting performance of ARIMA-SSA hybrid method is better than ARIMA and SSA.

THANK YOU

Questions, please send to: mfajar@bps.go.id

REFERENCES

- Aladag. C.H., Egrioglu. E. & Kadilar. C. (2012). Improvement in Forecasting Accuracy Using the Hybrid Model of ARFIMA and Feed Forward Neural Network American. *Journal of Intelligent* Systems 2(2), pp 12-17.
- Alexandrov. Th. & Golyandina. N. (2005). Automatic extraction and forecast of time series cyclic components within the framework of SSA. In Proceedings of the 5th St. Petersburg Workshop on Simulation, June 26 – July 2, 2005, St.Petersburg State University, St.Petersburg, pp 45–50.
- 3. Chai. T. & Draxler. R.R. (2014). Root mean square error or mean absolute error (MAE)?-Arguments against avoiding RMSE in the literature. Geosci. *Model Dev* 7, pp 1247-1250.
- 4. Chang. P.C. Wang. Y.W. & Liu. C.H. (2007). The development of a weighted evolving fuzzyneural network for PCB sales forecasting. *Expert Systems with Applications* 32, pp 86–96.
- Cryer. J.D. & Chan. K.S. (2008). Time series Analysis: With Application in R, Second Edition. USA: Spinger Science and Businiess Media, LLC.
- 6. Fajar. M. (2016). Perbandingan Kinerja Peramalan Pertumbuhan Ekonomi Indonesia antara ARMA, FFNN dan Hybrid ARMA-FFNN.DOI: 10.13140/RG.2.2.34924.36483.
- Fajar. M. (2018). Meningkatkan Akurasi Peramalan dengan Menggunakan Metode Hybrid Singular Spectrum Analysis-Multilayer Perceptron Neural Networks. DOI:10.13140/RG.2.2.32839.60320.
- 8. Makridakis. W. & MacGee. (1999). Metode dan Aplikasi Peramalan. Binarupa Aksara.
- Rahmani. D. (2014). A forecasting algorithm for Singular Spectrum Analysis based on bootstrap Linear Recurrent Formula coefficients. *International Journal of Energy and Statistics* 2 (4), pp 287–299.
- 10. Wei. W.W.S. (2006). Time series Analysis: Univariate and Multivariate Methods. Pearson Education, Inc.
- Zhang. G.P. (2003). Time series Forecasting using a Hybrid ARIMA and Neural networks Model. Neurocomputing 50, pp 159-175.
- Zhang, Q. Wang, B.D., He. B., Peng, Y. & Ren. M.L. (2011). Singular Spectrum Analysis and ARIMA Hybrid Model for Annual Runoff Forecasting. *Water Resources Management* 25, pp 2683-2703.

