

Comparison of ARIMA, SSA, and ARIMA – SSA Hybrid Model Performance in Indonesian Economic Growth Forecasting

Action Area C. Integrated statistics for integrated analysis (SC1) **Methodological approaches to integrated analysis: Use of sound methodologies**

> Presenter: **Muhammad Fajar Statistics Indonesia**

BACKGROUND

- The development of forecasting methods is increasingly rapid and complex as advances in the development of computing technology
- Using Hybrid Forecasting

METODOLOGY

• **Data Source**

The data used in this research is economic growth (quarter to quarter, q to q) 1983 Q2 (quarter 2) – 2018 Q2 taken from Badan Pusat Statistik-Statistics Indonesia (BPS). The data for testing is divided into 20% observations (28 forecast ahead), 10% observations (14 forecast ahead), 5% observations (7 forecast ahead), and 3% observations (4 forecast ahead).

• **ARIMA-SSA Hybrid**

ARIMA – SSA hybrid method is a combination of ARIMA and Singular Spectrum Analysis (SSA) method. Time series data is assumed to consist of linear and nonlinear components, thus could be represented as:

$$
x_t = P_t + N_t
$$

with P_t is a linear component and N_t is a nonlinear component. ARIMA is used to forecast on linear component, then the residual from the linear component is the nonlinear component. Then, SSA is used to forecast the nonlinear component.

$$
\hat{x}_{T+h} = \hat{P}_{T+h} + \hat{N}_{T+h}
$$

with \hat{x}_{T+h} is the x forecasting result on the $T+h$ period, \hat{P}_{T+h} is the P forecasting result on the $T + h$ period, \widehat{N}_{T+h} N forecasting result on the $T + h$ period, and h is the ahead period.

METODOLOGY

• **ARIMA (Autoregressive-Moving Average)**

In general, ARIMA $(p, d, q)(P, D, Q)^S$ model for x_t time series is:

$$
\Phi_P B^S \phi_p(B) (1 - B)^d (1 - B^S)^D x_t = \theta_q(B) \Theta_Q(B^S) \varepsilon_t
$$

METODOLOGY

• **Singular Spectrum Analysis (SSA)**

Step 1. Embedding

Given a $x_1, x_2, ..., x_T$ time series, choose an even number L, where L parameter is the window length defined as $2 < L < T/2$, and $K = T - L + 1$.

The cross matrix is:

$$
\mathbf{X} = (X_1, ..., X_T) = \begin{pmatrix} x_1 & x_2 & \cdots & x_K \\ x_2 & x_3 & \cdots & x_{K+1} \\ \vdots & \vdots & \ddots & \vdots \\ x_L & x_{L+1} & \cdots & x_T \end{pmatrix}
$$

The cross matrix proves to be a Hankel matrix, which means every element in the main anti diagonal has the same value. Thus, X could be assumed as multivariate data with *L* characteristic and *K* observations so that the covariance matrix is $S =$ XX' with dimension of $L \times L$.

METODOLOGY

.

Step 2. Singular Value Decomposition (SVD)

Suppose that \boldsymbol{S} has eigen value and eigen vector $\,\lambda_i$ and U_i , respectively. Where $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_L$ and $U_1, ..., U_L.$ Thus, obtained SVD from X as follows:

$$
X = E_1 + E_2 + \dots + E_d \tag{1}
$$

where $E_i = \sqrt{\lambda_i} U_i V'_i$, $i = 1, 2, ..., d$, E_i is the main component, d is the number of eigen value λ_i , and $V_i = X' \ U_i/\sqrt{\lambda_i}$.

METODOLOGY

• **Step 3. Grouping**

In this step, X is additively grouped into subgroups based on patterns that form a time series, they are trend, periodic, quasi-periodic, and noise component. Partition the index set $\{1,2,\ldots,d\}$ into several groups I_1, I_2, \ldots, I_n , then correspond X_I matrix into group $I=$ $\{i_1, i_2, ..., i_h\}$ which is defined as:

$$
X_I = E_{i_1} + E_{i_2} + \dots + E_{i_b}
$$
 (2)

Thus, the decomposition represents as:

$$
X = X_{I_1} + X_{I_2} + \dots + X_{I_n}
$$
 (3)

with $\pmb{X}_{I_j} (j=1,2,...,n)$ is reconstructed component (RC). \pmb{X}_I component contribution measured with corresponding eigen value contribution: $\sum_{i\in I}\lambda_i/\sum_{i=1}^d\lambda_i$. Using the close frequency range from the main components is based on the study of grouping process using auto grouping (Alexandrov & Golyandina, 2005). Main components with relatively close frequency ranges are grouped into one reconstructed component. So on, until several reconstructed components are formed.

Step 4. Reconstruction

In this last step, X_{I_j} is transformed into a new time series with *T* observations obtained from diagonal averaging or Hankelization. Suppose that Y is a matrix with $L \times K$ dimensions and has

 y_{ij} , $1 \le i \le L$, $1 \le j \le K$ elements. Then, $L^* = \min(L, K)$, $K^* = \max(L, K)$, and $T = L +$ $K-1$. Then, $y_{ij}^* = y_{ij}$ if $L < K$ and $y_{ij}^* = y_{ji}$ if $L > K$. Y matrix transferred into $y_1, y_2, ..., y_T$ series with using the following formula:

$$
y_{k} = \begin{cases} \frac{1}{k} \sum_{m=1}^{k} y_{m,k-m+1}^{*}, 1 \leq k \leq L^{*} \\ \frac{1}{L^{*}} \sum_{m=1}^{L} y_{m,k-m+1}^{*}, L^{*} \leq k \leq K^{*} \\ \frac{1}{T-k+1} \sum_{m=k-K^{*}+1}^{T-k^{*}+1} y_{m,k-m+1}^{*}, K^{*} \leq k \leq T \end{cases}
$$
(4)

Diagonal averaging on equation (4) is applied to every matrix component X_{I_j} on equation (3) resulting a $\widetilde{X}^{(k)}=\left(\breve{x}_1^{(k)},\breve{x}_2^{(k)},...,\breve{x}_T^{(k)}\right)$ series. Thus, $x_1,x_2,...,x_T$ series is decomposed into an addition of reconstructed *m* series:

$$
x_t = \sum_{k=1}^m \breve{x}_t^{(k)}, t = 1, 2, ..., T
$$
 (5)

Step 4. Reconstruction

In this last step, X_{I_j} is transformed into a new time series with *T* observations obtained from diagonal averaging or Hankelization. Suppose that Y is a matrix with $L \times K$ dimensions and has y_{ij} , $1 \le i \le L$, $1 \le j \le K$ elements. Then, $L^* = \min(L, K)$, $K^* = \max(L, K)$, and $T = L + K - 1$. Then, $y_{ij}^* = y_{ij}$ if $L < K$ and $y_{ij}^* = y_{ji}$ if $L > K$. Y matrix transferred into $y_1, y_2, ..., y_T$ series with using the following formula:

$$
y_{k} = \begin{cases} \frac{1}{k} \sum_{m=1}^{k} y_{m,k-m+1}^{*}, 1 \leq k \leq L^{*} \\ \frac{1}{L^{*}} \sum_{m=1}^{L} y_{m,k-m+1}^{*}, L^{*} \leq k \leq K^{*} \\ \frac{1}{T-k+1} \sum_{m=k-K^{*}+1}^{T-K^{*}+1} y_{m,k-m+1}^{*}, K^{*} \leq k \leq T \end{cases}
$$
(4)

Diagonal averaging on equation (4) is applied to every matrix component X_{I_j} on equation (3) resulting a $\widetilde{\pmb{X}}^{(k)}=\left(\widecheck{\pmb{\chi}}_1^{(k)},\widecheck{\pmb{\chi}}_2^{(k)},...,\widecheck{\pmb{\chi}}_T^{(k)}\right)$ series. Thus, $x_1,x_2,...$, x_T series is decomposed into an addition of reconstructed *m* series:

$$
x_t = \sum_{k=1}^{m} \breve{x}_t^{(k)}, t = 1, 2, ..., T
$$
 (5)

SSA Forecasting

SSA forecasting used in this research is SSA recurrent, with estimating minnorm LRR (Linear Recurrence Relationship) coefficient. The LRR coefficient is calculated with the following algorithm:

- 1. Input: $\mathbf{P} = [P_1: \dots: P_r]$ matrix, P is a matrix composed of U_i eigen vector from SVD step. Suppose that P is a P that the last row is removed, and P is a P that the first row is removed.
- 2. For every P_i vector column from P, calculate π_i , where π_i is a the last component from P_i , and P_i is a P_i that the last component is removed.
- 3. Calculate: $v^2 = \sum_{i=1}^r \pi_i^2$. If $v^2 = 1$, then STOP with a warning message "Verticality coefficient equals 1."

4. Calculate the min-norm LRR coefficient (\mathcal{R}) :

$$
\mathcal{R} = \frac{1}{1 - v^2} \sum_{i=1}^{r} \pi_i P_i
$$

- 5. From point (4) obtained: $R = (\alpha_{L-1} ... \alpha_1)'$.
- 6. Then, calculate the forecasting value with:

$$
\hat{x}_n = \sum_{i=1}^{L-1} \alpha_i \tilde{x}_{n-1}, \qquad n = T+1, \dots, T+h
$$

RESULTS

Applied in Indonesian Economic Growth Forecasting (Quarterly)

Table 2.1 RMSE of ARIMA, SSA, and ARIMA-SSA Hybrid Method.

source: author.

Table presents RMSE according to the number of test data used from the observed method. In general, when the test data is smaller, the RMSE from ARIMA (0,0,0) $(1,0,1)^4$ and ARIMA (0,0,0) $(1,0,1)^4$ – SSA hybrid is decreasing, whereas the RMSE result of SSA is unstable. ARIMA-SSA hybrid method gives a minimum RMSE compared to the other two methods. This shows that forecasting performance of ARIMA-SSA hybrid method is better than ARIMA and SSA.

THANK YOU

Questions, please send to: mfajar@bps.go.id

- REFERENCES
1. Aladag. C.H., Egrioglu. E. & Kadilar. C. (2012). Improvement in Forecasting Accuracy Using the Hybrid Model of ARFIMA and Feed Forward Neural Network American. Journal of Intelligent Systems 2(2), pp 12-17.
- 2. Alexandrov. Th. & Golyandina. N. (2005). Automatic extraction and forecast of time series cyclic components within the framework of SSA. In Proceedings of the 5th St. Petersburg Workshop on Simulation, June 26 - July 2, 2005, St. Petersburg State University, St. Petersburg, pp 45-50.
- 3. Chai. T. & Draxler. R.R. (2014). Root mean square error or mean absolute error (MAE)?-Arguments against avoiding RMSE in the literature. Geosci. Model Dev 7, pp 1247-1250.
- 4. Chang. P.C. Wang. Y.W. & Liu. C.H. (2007). The development of a weighted evolving fuzzyneural network for PCB sales forecasting. Expert Systems with Applications 32, pp 86-96.
- 5. Cryer. J.D. & Chan. K.S. (2008). Time series Analysis: With Application in R, Second Edition. USA: Spinger Science and Businiess Media, LLC.
- 6. Fajar. M. (2016). Perbandingan Kinerja Peramalan Pertumbuhan Ekonomi Indonesia antara ARMA, FFNN dan Hybrid ARMA-FFNN.DOI: 10.13140/RG.2.2.34924.36483.
- 7. Fajar. M. (2018). Meningkatkan Akurasi Peramalan dengan Menggunakan Metode Hybrid Singular Spectrum Analysis-Multilayer Perceptron Neural Networks.DOI:10.13140/RG.2.2.32839.60320.
- 8. Makridakis. W. & MacGee. (1999). Metode dan Aplikasi Peramalan. Binarupa Aksara.
- 9. Rahmani. D. (2014). A forecasting algorithm for Singular Spectrum Analysis based on bootstrap Linear Recurrent Formula coefficients. International Journal of Energy and Statistics 2 (4), pp $287 - 299.$
- 10. Wei. W.W.S. (2006). Time series Analysis: Univariate and Multivariate Methods. Pearson Education, Inc.
- 11. Zhang. G.P. (2003). Time series Forecasting using a Hybrid ARIMA and Neural networks Model. Neurocomputing 50, pp 159-175.
- 12. Zhang. Q. Wang. B.D., He. B., Peng. Y. & Ren. M.L. (2011). Singular Spectrum Analysis and ARIMA Hybrid Model for Annual Runoff Forecasting. Water Resources Management 25, pp 2683-2703.

