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Abstract:  

Accurate measures of productivity are required to monitor target 8.2 of Sustainable Development Goals 

(SDGs). The objectives of productivity measurement include technology, efficiency, real cost savings, 

benchmarking production processes and living standards. Various methods have been derived to 

measure efficiency and productivity, including parametric and nonparametric approach. In parametric 

approach, stochastic frontier analysis (SFA) is frequently preferred. The characteristic of SFA is that its 

error is decomposed into two components: one component to capture noise and another one to capture 

inefficiency. SFA assumes that production activities among units are independent. However, this 

assumption is often not realistic. Production units may be interdependent through many kinds of 

externalities and supply-chain networks. This paper considers spatial dependencies among regions to 

measure technical efficiency of rice farming in East Java province. Spatial relationships among regions 

are quantified using k-nearest neighbor (k-NN) spatial weights. Maximum likelihood method is used to 

estimate the parameters. The findings presented in this study are based primarily on data from Cost 

Structure of Paddy Cultivation Household Survey 2017 (SOUT2017-SPD) that is conducted by Badan 

Pusat Statistik (BPS). The result showed that there is positive spatial autocorrelation of paddy 

production in East Java. It is indicated by significant Moran’s I statistic with p-value 0.0092. As 

standard SFA does not take into account the spatial lag into model, the residuals suffer from spatial 

autocorrelation. This implies that traditional efficiency measures using non-spatial stochastic frontier 

model generate biased and inconsistent results. Moreover, estimation result suggests that the influence 

of technical inefficiency in standard SFA is underestimated. It affects the technical efficiency 

distribution and its ranking. Considering spatial lag into model provides more reliable results. Spatial 

autocorrelation issues in residuals are resolved and better estimates for technical efficiencies are 

produced. 
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1. Introduction:  

Target 8.2 of Sustainable Development Goals (SDGs) mandates to achieve higher levels of 

economic productivity through diversification, technological upgrading and innovation. Traditionally, 

the productivity is measured using partial productivity such as labour productivity or capital 

productivity. However, partial productivity fails to capture any direct effects of technological change 

and does not take into account the elasticity of substitution among inputs. Multifactor productivity 

(MFP) is the more appropriate tool to measure productivity. MFP relates the output to a bundle of 

inputs. MFP growth can be decomposed into technical efficiency change, technical progress and scale 

economic effects. Therefore, an attempt to improve MFP could be undertaken via enhancing efficiency 

and adopting new technology. 

Various methods have been derived to measure efficiency and MFP. The measurement of MFP can 

be classified into two main approaches: non-frontier approaches and frontier approaches. Non-frontier 

approaches assume that outputs are efficiently produced on production frontier, while frontier 

approaches allow for outputs being produced off the frontier (Suphannachart & Warr, 2010). Both the 

non-frontier and frontier approaches could be further grouped into nonparametric and parametric 

methods. Nonparametric methods do not use particular functional form, while parametric methods use 

specific functional form such as cobb-douglas or transcendental logarithmic (translog) production 

functions. 
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Stochastic frontier analysis (SFA) is the popular parametric frontier method for measuring 

efficiency and MFP. Efficiency measurement needs cross-section or panel data, while MFP 

measurement needs panel data. The characteristic of SFA is that its error is decomposed into two 

components: one component to capture noise and another one to capture inefficiency. SFA assumes that 

noise and inefficiency terms among units are independent (Coelli et al., 2005). However, this 

assumption is often not realistic. Production units may be interdependent through many kinds of 

externalities and supply-chain networks. Knowledge spillover is a kind of spatial externalities that 

drives the imitation and innovation of production technology. While supply-chain networks can exist 

since production activities in a particular area impress the labor market and the intermediate goods 

market in its surrounding areas (Tsukamoto, 2019). 

Fusco (2017) explains that if spatial dependencies are significant, then traditional techniques used 

to estimate the SFA parameters generate biased results. If the errors are spatially correlated, then 

assumption of a spherical error covariance matrix is violated, leading to biased and inconsistent 

estimators. In order to resolve these problems, studies on stochastic frontier models incorporating 

spatial effects have developed rapidly since 2010. Fusco & Vidoli (2013) proposed a spatial stochastic 

frontier model with spatial error model (SEM) structure using maximum likelihood estimation. Adetutu 

et al. (2015) estimated stochastic frontier model that incorporates spatial lag of X (SLX) structure. Glass 

et al. (2016) developed a spatial autoregressive (SAR) stochastic frontier model using panel data. 

Tsukamoto (2019) proposed a spatial autoregressive stochastic frontier model for panel data 

incorporating a model of technical inefficiency. The model simultaneously estimates the stochastic 

frontier and determinants of technical inefficiency in single stage. 

This paper uses spatial stochastic frontier model to measure technical efficiency of rice farming in 

East Java province. East Java is preferred as the second largest rice grower in Indonesia. Each district 

is considered as decision making unit since each district is an important policy maker for its rice 

farming. Therefore, aggregate technical efficiencies are estimated for 38 districts in East Java. The 

spatial relationships among districts are quantified using k-nearest neighbor (k-NN) spatial weights. For 

functional form of spatial stochastic frontier model, this paper uses cobb-douglas production function. 

Maximum likelihood method is used to estimate the parameters. The performance of spatial stochastic 

frontier model is compared to standard non-spatial stochastic frontier model using mean absolute 

prediction error (MAPE) criteria.  

  

2. Methodology:  

Data for this study is acquired from Cost Structure of Paddy Cultivation Household Survey 2017 

(SOUT2017-SPD) that is conducted by Badan Pusat Statistik (BPS). Using the data, aggregate input-

output variables are calculated for 38 districts in East Java. Table 1 presents input-output variables used 

in the analysis. 

Table 1. Lists of input-output variables used in the analysis 

No. Input/output Variable Description Unit 

1 Output Y Quantity of production Kg 

2 Input X1 Land 𝑚2 

3 Input X2 Seed Kg 

4 Input X3 Fertilizer Kg 

5 Input X4 Labour Person-hours 

6 Input X5 Capital  Thousand rupiahs 

This study adopts model proposed by Fusco & Vidoli (2013) that incorporates spatial lag of 

inefficiency into standard stochastic frontier model. Output and input variables are linked using cobb-

douglas production function. The model could be written in matrix formulation as: 

𝒚̇ = 𝑿̇𝜷 + 𝒗 − 𝒖 
= 𝑿̇𝜷 + 𝒗 − (𝑰 − 𝜆𝑾)−1𝒖̃ 

(1) 

where 𝒚̇ is (𝑛𝑥1) vector of output in logarithmic form, 𝑿̇ is (𝑛𝑥𝑝) matrix of inputs in logarithmic form, 

𝜷 is (𝑝𝑥1) vector of parameters, 𝒗 is (𝑛𝑥1) vector of noise term, 𝒗 ~ 𝑖𝑖𝑑 𝑁(𝟎, 𝜎𝑣
2𝑰), 𝒖 is (𝑛𝑥1) vector 
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of inefficiency term, 𝒖 ~ 𝑁+(𝟎, (𝑰 − 𝜆𝑾)−1(𝑰 − 𝜆𝑾𝑇)−1𝜎𝑢̃
2𝑰), 𝒖̃ is (𝑛𝑥1) random vector, 

𝒖̃ ~ 𝑁(𝟎, 𝜎𝑢̃
2𝑰), 𝜆 < |1| is a spatial autoregressive coefficient, and 𝑾 is (𝑛𝑥𝑛) spatial weights matrix. 

The inefficiency term for each unit (𝑢𝑖) could be denoted as (1 − 𝜆 ∑ 𝑤𝑖.𝑖 )−1𝑢̃𝑖 and by noting 
(1 − 𝜆 ∑ 𝑤𝑖.𝑖 ) as 𝛿(𝜆), the density function of 𝑢𝑖 could be written as: 

𝑓([𝛿(𝜆)]−1𝑢̃) =
2

√2𝜋[𝛿(𝜆)]−1𝜎𝑢̃

𝑒𝑥𝑝 {−
[𝛿(𝜆)]−2𝑢̃2

2[𝛿(𝜆)]−2𝜎𝑢̃
2} (2) 

The density function of noise term for each unit (𝑣𝑖) could be written as follows: 

𝑓(𝑣) =
1

√2𝜋𝜎𝑣

𝑒𝑥𝑝 {−
𝑣2

2𝜎𝑣
2} (3) 

Given the independence assumption, the joint density function of [𝛿(𝜆)]−1𝑢̃ and 𝑣 is the product 

of equations (2) and (3): 

𝑓([𝛿(𝜆)]−1𝑢̃, 𝑣) =
1

𝜋[𝛿(𝜆)]−1𝜎𝑢̃𝜎𝑣
𝑒𝑥𝑝 {−

𝑣2

2𝜎𝑣
2 −

[𝛿(𝜆)]−2𝑢̃2

2[𝛿(𝜆)]−2𝜎𝑢̃
2} (4) 

Since 𝜀 = 𝑣 − [𝛿(𝜆)]−1𝑢̃, the joint density function for [𝛿(𝜆)]−1𝑢̃ and 𝜀 becomes: 

𝑓([𝛿(𝜆)]−1𝑢̃, 𝜀) =
1

𝜋[𝛿(𝜆)]−1𝜎𝑢̃𝜎𝑣
𝑒𝑥𝑝 {−

(𝜀 + [𝛿(𝜆)]−1𝑢̃)2

2𝜎𝑣
2 −

[𝛿(𝜆)]−2𝑢̃2

2[𝛿(𝜆)]−2𝜎𝑢̃
2} (5) 

Fusco (2017) shows that the marginal density function of 𝜀 is obtained by integrating [𝛿(𝜆)]−1𝑢̃ 

out of 𝑓([𝛿(𝜆)]−1𝑢̃, 𝜀), which yields: 

𝑓(𝜀) = ∫ 𝑓([𝛿(𝜆)]−1𝑢̃, 𝜀) 𝑑𝑢

∞

0

 

=
2

𝜎
𝜙 (

𝜀

𝜎
) 𝛷 (−

𝛾𝜀

𝜎
) 

(6) 

where 𝜎 = √𝜎𝑣
2 + [𝛿(𝜆)]−2𝜎𝑢̃

2 , 𝛾 =
[𝛿(𝜆)]−1𝜎𝑢̃

𝜎𝑣
, 𝜙(. ) is standard normal density function, and 𝛷(. ) is 

standard normal distribution function. 

The marginal density function 𝑓(𝜀) is asymmetrically distributed with mean and variance: 

𝐸(𝜀) = −𝐸([𝛿(𝜆)]−1𝑢̃) = −[𝛿(𝜆)]−1𝜎𝑢̃√
2

𝜋
 

𝑉(𝜀) = 𝜎𝑣
2 +

𝜋 − 2

𝜋
[𝛿(𝜆)]−2𝜎𝑢̃

2 

(7) 

The log-likelihood function for a sample of 𝑛 units is given by: 

𝑙𝑛(𝐿) = ∑ {
1

2
𝑙𝑛 (

2

𝜋
) − 𝑙𝑛(𝜎) + 𝑙𝑛 [𝛷 (−

𝛾𝜀𝑖

𝜎
)] −

𝜀𝑖
2

2𝜎2}

𝑛

𝑖=1

 (8) 

In order to obtain estimates of the technical efficiency of each unit, the conditional distribution of 

[𝛿(𝜆)]−1𝑢̃ given 𝜀 is computed as: 

𝑓([𝛿(𝜆)]−1𝑢̃|𝜀) =
𝑓([𝛿(𝜆)]−1𝑢̃, 𝜀)

𝑓(𝜀)
 

=
1

√2𝜋𝜎∗

𝑒𝑥𝑝 {−
([𝛿(𝜆)]−1𝑢̃ − 𝜇∗)2

2𝜎∗
2 } / [1 − 𝛷 (−

𝜇∗

𝜎∗
)] 

(9) 

where 𝜇∗ = −
𝜀[𝛿(𝜆)]−2𝜎𝑢̃

2

𝜎2
 and 𝜎∗

2 =
[𝛿(𝜆)]−2𝜎𝑢̃

2𝜎𝑣
2

𝜎2
 

Finally, technical efficiency (TE) score for each decision making unit can be calculated as below 

(Fusco, 2017): 

𝑇𝐸𝑖 = 𝐸(𝑒𝑥𝑝{−[𝛿(𝜆)]−1𝑢̃𝑖}|𝜀𝑖) 

= [
1 − 𝛷(𝜎∗ − 𝜇∗𝑖/𝜎∗)

1 − 𝛷(−𝜇∗𝑖/𝜎∗)
] 𝑒𝑥𝑝 {−𝜇∗𝑖 +

1

2
𝜎∗

2} 
(10) 
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3. Result:  

Figure 1 depicts spatial relationships of paddy production among districts in East Java. The figure 

shows that there is positive spatial autocorrelation of paddy production among districts. Moran’s test 

shows that the spatial autocorrelation is significant with p-value 0.0092. As a result, the residuals of 

standard SFA are spatially correlated (Figure 2). This implies that traditional efficiency measures using 

non-spatial stochastic frontier model generate biased and inconsistent results. 

 
 

 

 

The spatial autocorrelation issue in standard stochastic frontier analysis (SFA) is resolved by spatial 

stochastic frontier analysis (SSFA). Figure 3 shows that residuals of SSFA model are no longer 

dependent on the region. In other words, high or low residuals do not agglomerate in specific region. 

Figure 4 presents the Moran’s scatterplot of SSFA residuals. Moran’s test produce p-value 0.1946, thus 

indicate that there is no spatial autocorrelation in SSFA residuals. Therefore, SSFA model gives more 

reliable estimates for technical efficiency than standard SFA. 

 
 

 

Table 2 presents the estimation results of SSFA compared to standard SFA. Estimation of 

production function in SSFA model is not substantially different with SFA model, but inefficiency 

parameter in SSFA model is much larger than that in SFA model. This suggests that the influence of 

technical inefficiency in SFA model is underestimated. Moreover, SSFA model gives better 

performance than SFA model, indicated by smaller mean absolute prediction error (MAPE). 

Figure 1. Moran’s scatterplot of paddy production 

in East Java 
Figure 2. Moran’s scatterplot of standard SFA 

residuals 

Figure 3. Spatial distribution of SSFA residuals Figure 4. Moran’s scatterplot of SSFA residuals 
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Table 2. Estimation results  
SFA SSFA 

Coefficien

t 

Standard error Coefficient Standard error 

𝜷𝟎 1.85033 1.16614 1.52048 0.55261 

𝜷𝟏 (𝐥𝐧 𝑳𝒂𝒏𝒅) 0.46023 0.26741 0.56544 0.09603 

𝜷𝟐 (𝐥𝐧 𝑺𝒆𝒆𝒅) 0.20884 0.15034 0.09938 0.13321 

𝜷𝟑 (𝐥𝐧 𝑭𝒆𝒓𝒕𝒊𝒍𝒊𝒛𝒆𝒓) 0.21865 0.10061 0.21332 0.07231 

𝜷𝟒 (𝐥𝐧 𝑳𝒂𝒃𝒐𝒖𝒓) -0.04816 0.09121 -0.02520 0.10707 

𝜷𝟓 (𝐥𝐧 𝑪𝒂𝒑𝒊𝒕𝒂𝒍) 0.12661 0.04682 0.10925 0.09914 

𝝈𝒖
𝟐  0.07055 0.01496 0.05614 0.00542 

𝝈𝒗
𝟐 0.00012 0.00014 8.85𝑥10−7 3.33𝑥10−6 

𝝈𝟐 0.08732 - 0.08427 - 

𝜸 (𝑰𝒏𝒆𝒇𝒇𝒊𝒄𝒊𝒆𝒏𝒄𝒚 𝒑𝒂𝒓𝒂𝒎𝒆𝒕𝒆𝒓) 24.56639 - 63413.1863

0 

- 

𝝀 (𝑺𝒑𝒂𝒕𝒊𝒂𝒍 𝒍𝒂𝒈) - - 0.45086 - 

Log Likelihood 16.20735 - 16.95964 - 

MAPE 1.84805 - 1.81096 - 

Figure 5 shows the comparison of technical efficiency distribution between SFA and SSFA. There 

is no extreme technical efficiency score for SFA and SSFA, but there is substantial gap of density for 

both methods in the range of technical efficiency from 0.75 to 1. SSFA predicts more decision making 

units having technical efficiency between 0.75 and 1. 

 
Figure 5. Technical efficiency distribution of SFA and SSFA 

Considering spatial lag into stochastic frontier model affects technical efficiency ranking for several 

districts. Table 3 summaries the shifting of technical efficiency ranking before and after considering 

spatial effect in three affected districts: Kabupaten Banyuwangi, Kabupaten Lamongan and Kabupaten 

Bangkalan. These districts experience considerable shifting in their ranking. Rank of Kabupaten 

Banyuwangi goes up from 8 to 4 after spatial effect is considered. Kabupaten Lamongan experiences 

more substantial shifting, as its ranking falls from 4 to 10. While for Kabupaten Bangkalan, the rank 
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increases from 9 to 6. A more complete picture of relative position shifting for each districts in East 

Java are presented as spatial distribution in Figure 6. 

Table 3. Technical efficiency ranking for several districts before and after 

considering spatial effect 

Code Districts 

Ranking before 

considering spatial 

effect (SFA) 

Rangking after 

considering spatial 

effect (SSFA) 

3510 Kabupaten Banyuwangi 8 4 

3524 Kabupaten Lamongan 4 10 

3526 Kabupaten Bangkalan 9 6 

 
Figure 6. Spatial distribution of technical efficiency for SFA and SSFA 

4. Discussion, Conclusion and Recommendations: 

The result showed that there is significant spatial dependency of rice farming in East Java. Thus, 

traditional efficiency measures using stochastic frontier analysis (SFA) generate biased and inconsistent 

results. Moreover, estimation result suggests that the influence of technical inefficiency in SFA is 

underestimated. These spatial autocorrelation issues are effectively handled by spatial stochastic 

frontier analysis (SSFA). Residuals of SSFA model are no longer dependent on the region, indicated by 

insignificant Moran’s test with p-value 0.1946. Therefore, SSFA model gives more reliable estimates 

for technical efficiency than SFA model. In addition, SSFA model gives better performance than SFA 

model, indicated by smaller mean absolute prediction error (MAPE).  

Considering spatial effect into stochastic frontier model affects the distribution of technical 

efficiency and its ranking. There are three districts in East Java that experience considerable shifting in 

their technical efficiency ranking: Kabupaten Banyuwangi, Kabupaten Lamongan and Kabupaten 

Bangkalan. Other districts are relatively persistent with their technical efficiency ranking even though 

the spatial effect is considered. Finally, this paper recommends that spatial stochastic frontier model is 

better used to calculate the technical efficiency since production activities are probable to correlate 

depending on their geographical proximities. Accurate measures of technical efficiency implies the 

accurate measures of multifactor productivity. 
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